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S o m e  A s p e c t s  o f  the  W e t t i n g  T r a n s i t i o n  t 
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The wetting of an attractive planar wall by liquid at liquid-gas coexistence is 
investigated from a microscopic point of view. A model for interface detachment 
due to thermal fluctuations is first worked out. An empirical framework for dis- 
tinguishing between first-order and continuous wetting transitions is then set up, 
and quantified by the introduction of the van der Waals mean field model. This 
is solved for strong, short-range and weak, long-range forces. The role of fluc- 
tuations is reconsidered, and the nature of the required corrections examined, 
both for wall-fluid and fluid-fluid interfaces. 

KEY W O R D S :  Wetting transition; capillary waves; mean field model; non- 
uniform fluid. 

1. I N T R O D U C T I O N  

The study of macroscopic inhomogeneities of classical fluids in thermal 
equilibrium e.g., under the action of a gravitational field is anicent and 
not terribly interesting: local thermodynamics in the form 

- u(r) = ~ T(n(r)) (1.1) 

suffices, or its Archimedean version 

n(r) Vu(r) + VPr(n(r)) = 0 (1.2) 

Here u(r) is the external potential, n(r) is the fluid density, and #r(n) and 
Pr(n) denote the thermodynamic chemical potential and pressure 
functions, respectively. Microscopic inhomogeneities, analyzable in detail 
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only by difficult experiments or computer simulations, are a different story. 
There are two major regions of interest: externally imposed 
inhomogeneities due, e.g., to a rigid boundary substrate, and internally 
maintained inhomogeneity at a two-phase interface. A fair amount of 
recent effort (see, e.g., Refs. 1-7) has been devoted to situations in which 
the two are in some sense in competition, and these will form the subject of 
the present work. 

The phenomenon of one-component wetting (we will not discuss 
mixtures) is readily described in classical fashion (see Fig. 1 ). A liquid (L) 
drop which partially wets a bounding substrate (S) has its configuration 
within the gas (G) environment determined by the contact angle 0, satis- 
fying the mechanical equilibrium condition of vanishing tangential force: 

O,g - o,t = Otg cos 0 ( 1.3 ) 

where the o's are the respective surface tensions or works of formation of 
unit interracial area. One can then travel parametrically in two directions 
to prevent the satisfaction of (1.3). If 

~rsg - a , t<  -Olg (1.4) 

then 0 has passed 180 ~ and (in the absence of gravity) the liquid drop 
detaches from the surface, an unwetting transition. On the other hand, if 

Osg - o-,l> alg (1.5) 

then 0 passes through 0 ~ producing a totally flat layer covering the sub- 
strate, a wetting transition. 

Going over to thermodynamic, as opposed to mere mechanical, 
equilibrium, we imagine the system as open, supplied by a particle source 
to maintain coexistence # and P. In the complete wetting situation, the 
boundary substrate then biases the fluid to condense to all liquid, 

6 

/ / / /  S J l / /  / / / /  / / /  / / /  

Fig. 1. Mechanical equilibrium for partial wetting. 
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eliminating any liquid-vapor interface, and when fully nonwet to similarly 
evaporate to all gas. For partial wetting, in the presence of free evaporation 
and condensation of droplets, translation invariance along the plane of the 
substrate--now idealized as an infinite plane--will of course produce a 
perpendicularly stratified density profile in thermal equilibrium. For the 
attractive substrate interaction that we have in mind, we anticipate that a 
dense, liquidlike layer will abut the wall, with gas thereafter (see Fig. 2). 
However, right at the wall, oscillations of the liquid column should also 
produce a more gaslike region. 

Our objective is to obtain model approximations to the density profile, 
and, more importantly, to model the qualitative changes occurring under 
change of controllable parameters. For a simple fluid, we can regard tem- 
perature as the controllable parameter. It controls c~sg and c~,t only weakly, 
since these are principally energetic consequences of the substrate attrac- 
tion, but the liquid-gas surface tension is a more sensitive function of T, 
indeed dropping to zero at the critical point. It is clear from (1.4) and (1.5) 
that as aL~ drops, one passes from nonwetting through partial wetting, and 
on to the wetting transition. However, the phase-reversed phenomenon of 
drying (complete liquid ~ gas layer--* all gas) is first analyzed in model 
form as an indication of the extreme role that fluctuations can play. We 
follow this with a semiempirical discussion of the normal wetting sequence, 
emphasizing the distinction between continuous and first-order transitions. 
A more refined mean field model is then examined to reinforce our con- 
clusions; the two extreme cases of strong, short-range and weak, long-range 
forces are studied in some detail. The two basic deficiencies of the mean 
field approximation are finally attended to, that associated with local 
thermodynamics by a simple set of models, and that associated with neglect 
of correlations by a Kac-Siegert transformation ~8'9~ which amalgamates 
mean field and capillary wave concepts. 
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Fig. 2. Density profile for partial wetting. 
Z 
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2. I N T E R F A C E - D O M I N A T E D  T R A N S I T I O N  

The general situation that we will be interested in is that of a struc- 
tureless, plane-stratified wall characterized by an attractive tail sitting next 
to a very large repulsion for impenetrability (Fig. 3). The question we first 
ask is that of drying: whether a liquid column to the right will disappear to 
infinity, or adhere to the wall. To start, we will adopt a scale in which the 
intrinsic liquid-gas interface is reduced to a simple discontinuity, being 
broadened only by thermal motions--capillary waves. On this scale, any 
microscopic wall layer will not be seen, and our query concerns the 
existence of a sudden transition between a finite and infinite layer of gas. 
For analytic tractability, we consider here only a one-dimensional interface 
of a two-dimensional system. 

In this idealized "drumhead model" (Fig. 4) (see, e.g., Ref. 10), the 
instantaneous interface is specified by the single-valued surface amplitude 
~(t), the gas has density 0, and the incompressible liquid density is p, 
yielding an instantaneous system density 

p(z, t ) = p e ( z -  {( t) ) (2.1) 

The statistical mechanics of this system is easy but not quite trivial. For 
surface tension a and shallow surface deformation, the tension energy is 

E~[~] = a f [1 + ~ ( t )2 ]  1/2 - -  1 } dt 

(2.2) 
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Fig. 3. Configuration for drying transition. 
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Fig. 4. D r u m h e a d  model .  

where j" --- ctf/ c? t, while for the field energy 

E.[~] = ff  p(z, t) u(z, t) dz dt 

= p u(z, t) dz dt 
_(t) 

= p ~ u(~(t) ,  t) dt 
J 

/ / /  
/ / /  / '// 

(2.3) 

T 
t 

Z 

where f '  = ~?f/&, then 

p'(z, t) = p•(z -- ~(t)) 

E,[~]  = jJ  P %  0 o(z, t) dz dt 

and it follows that  the profile is determined by 

n'(z, t ) =  (p '(z,  t)> = (6E/aU(z ,  t)> = tS~_~T/(~U(z , t) 

(2.5) 

(2.6) 

for appropriate 
unspecified. 

Since 

where U(~, t) = S f  u(z, t) dz. The amount  of liquid is arbitrary, and so we 
have / ;  = 0. Thus the grand canonical partit ion function becomes 

2r=fex p /~f 1 "2 - [~a~ ( t ) + p U ( ~ ( t ) ,  t)] g tD~  (2.4) 

measure D{. We will leave boundary  conditions 
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or  

n'(z, t) = pro(z, t) ~,(z, t)/m r (2.7) 

where 
(z t) 

Z(z, t) = f ' e -fiE[4] D~ 

f~ e -BE[r D~ ~.(z, t): ~,,) 

Since these are standard path integral representations for the diffusion (or 
Bloch) equation, we have at once (11) 

1 l ~,, 
)=2fl----~ Z " -  flpU2, - ~ =  ~ - ~  - flpUP- (2.8) 

It is not difficult to eliminate Z and ~ from (2.7) and (2.8), yielding 

2(?z n' / ~t 2fla~F-z i n' t -Pu=0a (2.9) 

If u(z, t )=u(z) ,  then with suitable boundary conditions we will have a 
plane-stratified profile, reducing (2.9) to 

2 (2riO') 2 ~Z t , n ' )  q- (2tiff) 2 ~3Z ~ \ n ' / #  + p--a U = 0 (2.10) 

or on integrating from z to oo, 

0 1(,"? + 4fl2apU= 42 (2.11 ) 

for some constant 2. Now setting 

n'/p = ~2, so that f ~92(z) dz = 1 (2.12) 

(using the physically obvious monotonicity of n for our model), we find the 
basic relation 

- � 89  + ~2~pv0 = ;4, 

which is a standard Schr6dinger equation. 

(2.13) 



Some Aspects of the Wetting Transition 807 

u(z) 

/ 
/ 
/ 
/ 

U(Z 1 
/ 
/ 

/ 
/ 

z / 
/ 

-Kc~('z-a) 
Fig. 5. Prototypical wall potential. 
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The potential shown in Fig. 5 is prototypical. There are no bound 
states, i.e., 0 = 0 pointwise as soon as a drops to satisfy 

K a  z >~ 1/(2~2crp) (2.14) 

corresponding to liquid pushed out to infinity, whereas there is indeed a 
bound state, with localized 0 and hence n ' - - a  density rising quickly from 0 
to p for a larger than the limit of (2.14). Thus, there is a wetting trans- 
ition, albeit of drying type, in this model (see also Refs. 13 and 14). It is 
interface-dominated in that high a reduces the surface oscillations, which in 
turn allows the liquid column to get closer to the substrate attraction. 

3. W A L L - D O M I N A T E D  T R A N S I T I O N .  P R E L I M I N A R Y  

When liquid-gas interfacial motions can be neglected, one can speak 
of the wetting phenomenology as wall-dominated. It is still a matter of 
balance between substrate-imposed and interfacial energies, but the fluc- 
tuational contributions are small in comparison with mean field energies. 
Let us consider this structure from a highly primitive heuristic viewpoint. 
Since it is the combination 

a' = asg - as1 (3.1) 

that is expected to play a major role, we will again neglect the gas 
density and hence anchor ourselves far from the critical point. Thus, a '  
denotes -o-s/, a positive quantity for a typical attractive wall. 
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The problem then is that of estimating the substrate attraction and 
interracial density gradient contributions to the Helmholtz free energy, and 
for this purpose we imagine that the interracial excess energy density profile 
~bo(Z), centered at a, is unchanged as a varies (Fig. 6): 

~b(z) = ~b0(z - a) 

We will suppose that ~bo(Z ) has the same form as - n ' o ( z )  for the particle 
density profile, but not necessarily the same range. Then we will model the 
interfacial excess free energy per unit interracial area (a plane-stratified 
system is implied) 

fo f , (a)  =  o(Z- a) dz (3.2) 

by the simplest reasonable analytic form 

= )~a(1 - �89 a > 0  (3.3) 
1 2a f , ( a )  ( ~ a e  , a < O  

both f~ and its first derivative being continuous at a = O. Here ~r = f~(oQ) 
clearly denotes atg. 

The substrate interaction contribution to the free energy can be 
similarly modeled. It, too, should be sigmoidal, reaching its minimum value 
of - a '  when it acts on bulk fluid, and 0 when the fluid is gone, and so we 
choose 

- a ' ( 1  - � 89  ~), a > 0  (3.4) 
f s ( a )  = 1 rrt oTa - - ~  , a < 0  

) 
nfz) 

Z a 

Fig. 6. Potential, density, and free energy density. 
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7 -  ~ being the effective range of force. Taking a = 0 as reference, we have for 

the full free energy Af(a) = fl(a) + fs(a)  - f(O) 

~ l a ( l _ e - ; a ) _ � 8 9  .,.a), a > 0  
Af(a)= ~ la~l e ~ _ ~  la '~  o'~,,~ ~ - ~  ~ - ~ . y  t ~ - ~  ;, a < 0  

(3.5) 

an odd function, most  conveniently. We want  to determine the locat ion a 
that minimizes 4f(a). It is of course sufficient to examine the region a > 0, 
where Af(a) has at most  one s tat ionary value. The basic information we 

f( 0o ) > 0 o-'/a < 1 
A. when 

f(oo ) < 0 a'/a > 1 

f ' ( 0 )  > 0 a'/a < )]7 
B. when 

f '(O) < 0 a'/a > 2/7 

f ' ( a  ~ oo) > 0  )./7 < 1 
C. when 

f ' ( a -~  o o ) < 0  ) . /7> 1 

need is that  

(3.6) 

Using (3.6), we can now see how the free energy min imum changes as 
temperature increases with consequent  decrease of a. First, for short-range 
wall a t t ract ion in the sense that  2/7 < 1, we have the results shown in 
Fig. 7, where the min imum is indicated with a cross ( x ). We see that  there 

A f  

f l  

J 
O-'X 

X 0"<~ " < I  

A f  

~ Y  a 

), Or' 

3' Cr 

6~ 

J 

f A f  

_ ' ?~ o '  

7 a 

Fig. 7. Plot of 3f versus a for short-range potential, 2/7 < 1. 
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Fig. 8. Plot of Af versus a for long-range potential, s > 1. 

is a first-order dewetting transition, which takes place when the internal 
minimum reaches the a = - o o  minimum. This is readily computed to be at 

a'l/aJ"~d(Y-;)/ ~) 
. . . .  t 

Interestingly, this model does not seem to go on to the wetting transition. 
However, since the effective range 7 i will certainly increase as well, as cr 
drops, a continuous transition can readily be imagined. 

For  long-range wall attraction, 2/7 > 1, we similarly find the result in 
Fig. 8, which always shows a jump from finite to infinite a, a first-order 
wetting transition. 

4. M E A N  FIELD M O D E L  

Let us now elaborate the hand-waving discussion of the preceding 
section in the microscopic domain. The key approximation is that density 
fluctuations can be neglected, and the intelligent way of using this is in the 
context of the van der Waals mean field model (originating in Ref. 15). For  
this purpose, the pair interaction potential is divided into a short-range 
repulsive core and a long-range attractive tail (Fig. 9): 

~b(r) = Co(r) - ~bl (r) (4.1) 



Some Aspects of the Wetting Transition 811 

t 
f 

I 
f 

J 

Fig. 9. Van der Waals decomposition of pair interaction. 

r 

Fluctuations at the core level are not neglected, but rather encompassed by 
regarding the core fluid as in local bulk equilibrium, represented by a 
Helmholtz free energy 

Fo[n]  = f fo(n(r) ) n(r) d3r (4.2) 

where fo(n ) is the per-particle free energy. Fluctuations at the tail level are, 
however, specifically neglected by choosing the tail energy contribution as 

F~ [n] = - 2  f f  ~ l ( r -  r') n(r) n(r') d3r d3r' (4.3) 

In the presence of an external potential u(r), the bulk or internal 
Helmholtz free energy is thus modeled as 

= F -  f n(r) u(r) F B d3r 

= f  fo (n(r ) )n(r )d3r-~  f ;  q~,(r-r ')n(r)n(r ')d3r d3r ' (4.4) 

In particular, for a uniform fluid, we have 

F/V= nfo(n ) - 1~1/72 

# = c~(F/V)/On = #o(n)-  (~l n (4.5) 

P = -OF/O V= Po(n) - 101n 
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where ~b I = ~ ~bl(r) d3r. The mean field profile equation now follows as usual 
from (4.4) by functional differentiation 

It - -  u ( r )  = 6 F ~ / 6 n ( r )  

# o ( n ( r ' ) )  --  [ ~ , ( r  --  r ' )  n ( r ' )  d3r , 
J 

(4.6) 

Specializing to plane stratification, this reduces to 

It - u ( z )  = It0(n(z)) - 2~ I ~b2(z - z ' )  n ( z ' )  dz '  (4.7) 

where ~b2(z ) = ~T r(~l(r)  dr. 
Explicit solution of (4.7) is available in only a few cases. One is that of 

van der Waals, in which ~b~(r) is represented by a combination of cS(r) and 
V26(r). A more reasonable choice from the point of view of internal 
consistency (16'17) is that of a Yukawa function 

~ , ( r ) = A e  r/r (4.8) 

(with ~b~ =4gA),  the range here being normalized to unity. Thus 

~b2(z) = A e  I:l (4.8') 

and choosing for convenience/t o rather than n ( z )  as dependent variable, we 
then obtain for (4.7) 

It - u ( z )  = Ito(Z) - 2~zA f e -j~ ~'Jn0(#o(Z')) dz '  (4.9) 

where no is the thermodynamic function inverse to #o. 
Equation (4.9) can now be processed by successive differentiation: 

-u'(z) = It~(z) + 2~A f sgn(z - z') C -  
I z -  Z'lno(ito(Zt)) dz '  (4.10a) 

- u " ( z )  = #6'(z)  + 4 ~ A n o ( i t o ( Z ) )  - 2 g A  f e dz '  (4.10b) 

(4.9) and (4.10b) yield at once the "equation of motion" 

I t ~ ) ( z ) - # o ( Z ) + 4 ~ A n o ( # o ( Z ) ) + u " ( z ) - u ( z ) + # = O  (4.11) 

We also need boundary conditions. For a hard wall to the left of z = z o, we 
have n ( z ) =  0 for z ~< Zo, so that from (4.9) and (4.10a) 

I t -  U(~o) = I t o ( ~ o ) -  2 ~ A  e (z-~0~no(Ito(~'))  dz '  
0 

(4.12) 

- u ' (~o)  = I t ; (~o)  - 2 ~ A  e-(~-z~ &' 
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yielding the boundary condition I18/ 

G(Zo)  - Uo(Zo) + u ' ( z o )  - U(Zo) + ~ = 0 (4.13) 

In the absence of an external potential, using the thermodynamic 
no duo = d P o ,  we can integrate (4.11) at once to 

1 1 
2rc-----~/1 ~ ( z ) 2 - -  ~-- -~ [l~o(z)--n]2+po(llo(Z))=i p (4.14) 

If (4.14) is to correspond to a gas-liquid interface leading to bulk densities 
n o ( ~ )  = n G ,  n o ( -  ~ )  = n o ,  then according to (4.5), we need 

# L  --  4rcAn c = lz = # 6  --  4rcAnG 
(4.15) 

P o ( # c )  - 2 z A n 2  = P = Po(l~G) - 2roAn2 

where #G = #o(nc), #L = # o ( n L )  . This shows that P in (4.14) is the system 
pressure, and that the "potential function" (Fig. 10) 

Z(#o) = Po(#o)-  ~ ( # o -  #)2 (4.16) 

has equal maxima at #a and ~L .(16'17) 

Note that if a wall is now inserted at z = 0, then (4.13) in the form 

#o(0 ) - -~=# ; (0 )  at a wall 

locates the profile (4.14) by the condition Po(#o(0))= P, or 

1 
V(~o(0))  = P - ~  [~o(0)  - ~ l  2 

V(/'to) 

(4.17) 

(4.18) 

L 
P 

~o 

Fig. 10. Potent ia l  function for #o profile. 

822/47/5-6-14 
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The corresponding intersections W are of course pure gas phase, but in fact 
only one is possible: since go decreases from #a  at oo to its wall value, and 
since #;  cannot change sign in the interval, one has g o ( 0 ) - #  = # ; ( 0 ) >  0, 
so that only the right intersection is valid. 

5. L I M I T I N G  C A S E S  

Proceeding now to wetting, we imagine first a very strong, short-range 
attraction, i.e., assume 

- 1 >>/~u(z) for - b < ~ z < ~ O  
(5.1) 

u ( z ) = O  for z > 0  

with the wall at z o = - b .  It is convenient to switch to 

v(z)  = #o(Z) + u(z)  (5.2) 

as dependent variable, so that 

v "(z) - v(z)  + 4 ~ A n o [ v ( z  ) - u(z)] + # = 0 
(5.3) 

v ' ( - b ) - v ( - b ) + # = O  

Clearly, v and v' are continuous at z = 0, and no(V(Z) - u ( z ) )  = n~., the close- 
packing density, for - b  < z ~< 0. Given v(0) = #0(0) and v'(0) = #;(0) < 0, 
(5.3) is then trivial to solve in the region - b  ~< z ~< 0, yielding the displaced 
boundary condition 

#;(0) - #o(0) + # + 4roAns.(1 - e b) = 0 (5.4) 

for the field-free fluid to the right of z = 0. 
Equation (5.4) now replaces (4.17), locating the z>~0 profile in #o 

space by the condition 

p _ l  
V(#0(0)) = 87cA [go(0) - ~]2 (5.5) 

where r  b) emanating from (4.14) and (4.16). Thus, 
z = 0 corresponds to the intersection points W' shown, of which only the 
left is consistent--see argument following (4.18)--with physics. At fixed b, 

increases with increasing temperature, driving the intersection points 
toward #L, at which point a continuous transition to pure liquid takes 
place. The condition for the wetting transition is thus # L =  
#+4z~Anc(1--e-b) ,  or, by (4.15), 

n L = n c ( l _  e b) (5.6) 
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An intermediate-range case has been solved by Sullivan. It is that in 
which the wall is at Zo = 0 and 

u(z)  = - e e  - z  (5.7) 

the same range as the internal interactions. Since / d ' ( z ) - u ( z ) = 0 ,  (4.11) 
again implies (4.14), and (4.13) now reduces to 

~ ; ( 0 )  - ~,o(0) + ~ + 2~ = o (5.8) 

Hence the wall is determined by (5.5), with 

=/~ + 2e (5.9) 

The analysis is therefore precisely as in the strong potential case, with a 
necessarily continuous wetting transition with rise of temperature, occurr- 
ing when 

n L = e/2rcA (5.10) 

Let us now go to the extremely weak, long-range wall potential. We 
will paraphrase an elegant analysis of Aukrust and Hauge (19) (see also Refs. 
20-22). To do so, we first observe that the equation of motion (4.11) is the 
result of minimizing the quantity 

~ [ ~ o ]  = - P o ( ~ o ( Z ) )  + P 
0 

' } + ~ [~ 'o ( z )+u ' ( z )+~-~o(Z) -u ( z ) ]  2 az (5.11) 

and that the boundary condition (4.13) is likewise the result of the free 
variation of #o(Zo) in (5.11)--the so-called "natural" boundary condition. 
The physical meaning of (5.11) is found by first using (4.9) with (4.10a): 

# ' o ( Z ) + U ' ( Z ) + # - l ~ o ( Z ) - U ( Z ) = - 4 r c A  e Iz Z'ln(z,)d z, (5.12) 
0 

to transform the second part of (5.11), and then (4.9) itself to reexpress the 
first part, resulting in 

GT[/~0] = [ f o ( n ( z ) )  n(z )  + u(z)  n(z )  + P -- n(z)#] dz 
0 

2 - ~A e Iz-Z'ln(z) n(z ' )  dz dz' (5.13) 
o 

which is precisely the excess free energy due to the two interfaces. 
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Returning to the wetting problem, if the interaction with the wall is 
indeed weak, we can solve perturbatively (see Ref. 23 for a neat direct 
approach)  by using the field-free profile as variational ansatz. There are 
two problems. First, the field-free profile is undetermined by a common 
translation, so that we shall take 

#0(z)=#s(z-a) (5.14) 

where the standard profile #s(Z) is defined, e.g., by ]#}(z)l = Max at z = 0. 
Second, one expects a boundary layer near the wall, and corresponding 
energy contributions. However, if this "heals" well before the liquid gas 
interface--which will be far away for a long-range potential-- i ts  form will 
not change, and it can be neglected. Thus, instead of (5.11) we can use the 
variational expression (set the wall at z = 0) 

f0 { ~rr(a) = - - P o ( # o ( z - a ) ) + P  

+ - ~  [ # ' s ( z - a ) - - # s ( z - a ) + # + u ' ( z ) - u ( z ) ]  2 dz (5.15) 

To assess a wetting transition, we will be interested in comparing this to 
the fully wet situation: 

Aar(a)  = a t ( a )  - a r (oo)  = Q(a) + R(u, a) 

where 

Q(a)= f o  { P o ( # c ) - P o ( # s ( z - a ) )  

1 
+ ~ [#~(z - a) -- #s(Z -- a) + ,uc-I 

x [#}(z -- a) -- #s(Z -- a) + 2# - Izc] } dz 

R(u, a ) =  - ~ [ # ' s ( z - - a ) - # s ( z - a ) + l ~ L ] [ u ( z ) - u ' ( z ) ]  dz 

(5.16) 

If the scale of variation of u(z) is much longer than that of Us(Z), 
analysis of (5.16) is highly insensitive to details of either. This behavior is 
mainly due to the second, potential-dependent term R(u, a). It is only 
necessary to use the identity 
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fo~f(z) g(z) dz 

= f(O) I ~ g(z) dz+f (~v) f~  g(z) dz (5.17) 

fo + I f ( z ) - f ( 0 ) ]  g(z) dz + [ f ( z )  - f ( o o ) ]  g(z) dz 

where the second line can be dropped if the variation of f is restricted to 
the region around a. Hence 

R(u,a)_ #L--#G [U(Z)--U'(Z)] dz (5.18) 
4~A 

with the form shown in Fig. 11. Now Q(a) reaches its asymptotic value of 0 
at a much smaller value of a. It is therefore clear that if Q(a) dips low 
enough to render AaT(a)<(Y--partial wetting at finite a - - a  weakening of 
this dip produces a minimum 3aT(a) at a = o% necessarily a discontinuous 
first-order transition. 

Assessment is normally made, not in terms of the model parameter a, 
but rather in terms of the coverage 

F= fo In(z) -- nG] dz (5,19) 

translating via (4.11) to 

4~AF= fo  [#~ + u(z) - #G] dz + #'(0) + u(O) (5.20) 

A O'T [' a)  

\ / 
\ / 

f %  (a)  

Fig. 11. Component free energies for long-range potential. 

a 
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Divergence of (5.19) is associated, via sum rules (see, e.g., Refs. 24 and 25) 
with large interracial fluctuations, but we will use this information merely 
to motivate our return to the question of techniques for improving the 
basic mean field model. 

6. LOCAL C O R R E C T I O N S  

For the system at hand, the van der Waals approach is inadequate in 
both of its assumptions (but see Ref. 26). The adsorbed layer at the wall 
can change its density very rapidly, so that local core thermodynamics will 
not do, and large-scale density waves--the capillary waves we have already 
examined--make the use of mean field itself suspect. Let us see how one 
might correct for these effects. (27-3~ 

Suppose then that the core fluid density cannot be regarded as locally 
constant. The most direct correction procedure is that in which one 
chooses a uniform reference density fi with no external field, and expands 
the quantity # - u ( r ) - # o ( r '  ), which would vanish for slowly varying 
density. Since 

~#--u(r) 1 ~_~(r~r_') ] 
•n(r') - i l l  n(r) c2~ (6.1) 

where C2o is the core direct correlation function, and since # - u ( r ) =  #o(~) 
initially, we have to first order 

# - u ( r ) - # o ( n ( r ) )  

where C2o is evaluated at ~. But 

and so 

f c20(r - r') d3r ' = [ 1 -- flP'o(fi)q/n = ~ 1 -- ~/z~(ri) ]/~ 

# - - u ( r ) = # o ( n ( r ) ) +  --#'o(~l) n(r) 

/~ c20(r-- r') n(r') d3r ' (6.3) 

Hence, to this order, (4.6) still applies, but with a modified #o(n) and a 
modified ~bl(r - r'). 
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Higher accuracy expansions are available, e.g., expanding about n(r) 
rather than & but in conformity with the tenor of our discussion, we will 
instead treat the matter of core fluid inhomogeneity from a model view- 
point. The primitive model is that of a nonuniform, one-dimensional, 
diameter-a, hard-rod fluid. (31) This is most readily solved (32) by observing 
that the grand partition function 

S(X)=N~__ !~ exp /3 u(xi) dx~ . . . dXN (6.4) 
0 l + a ~ < x 2 , " - , X N - I - a < ~ x  

in the box ( -0% x) satisfies 

Thus, setting 

8 
8~ E(x  + a) = e e(" u(x))Z(x) (6.5) 

f 
x 

Z(x)=exp  ti P ( y )  dy (6.6) 

we have 

# - u(x) = ,8 P (y )  dy + In/3 P(x  + a) (6.7) 

As a consequence, 

a [ u -  u(x)] a(x + e - y) 
= e(x + a - y)  - e(x - y )  + (6.8) 

aP(y )  t iP(y)  

But since the grand potential is given by s = -(1/t i)In ~(oo ), the sequence 

1 = f  8 ( z -  y)  dz 

8t" (SP(z) a[#- -u(x) ]  
=11 dx dz Jo a [ t , -  u(x)] aP(y) 

_ (  afa a [ u - u ( x ) ]  
dx d 6[#--u(x)]  (SP(y) 

fy' n(x)  dx -t- n (y  - a) 
- a t iP(y)  

then establishes 

n(y  -- a) (6.9) 
t iP(Y)  - 1 -- S~ a n(z) dz 
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For  the thermodynamics,  we now have 

; /E ;; 1 f 2=- -  n(y--a) 1-- n(y) dy dz 
a 

which is readily transformed to 

~ -~ ; } (.+~)+" . (.-~)]/[~ - ;;+2_ .,,, ..7, .. 
which we write as 

f n~(y) 
f 2 = -  1-anT(y) 

The weighted densities here are defined by 

n~(x) = f w(z) n(x + z) dz, f w(z) dz= l 

where 

= - ~  - l y l  ~'(Y) a 

dy (6.10) 

(6.11) 

f2 o = f no(r) co0(n~(r)) d3r (6.12) 

where a)o(n ) = -Po(n)/n, the weights r and a thus being available to satisfy 
any further conditions we may wish to impose. 

With (6.12), we can now return to the profile, which is best obtained 
indirectly. We first separate the ideal gas and "excess" parts: 

1 +fno(r) (6.13) I2~ = ---fl f n(r) d3r og~X(n~(r)) d3r 

1 
o;X(n) = ~o0(n) + ~ 

produces a volume average, and 

~(Y) = -Y~'(Y)=5 

produces a surface average via an infinitesimal dilation. Generalization to 
non-hard co re~o r e  interactions in three dimensions is now obvious. One 
writes instead 
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and then use the relat ion 

6 
d3 r ] F~o = s [ 1 - f  n ( r ) ~  

J 

to obta in  

1 f n(r)[ln n(r)-- 1 ] d3r + f no(r) f;X(n (r))d3r Fg=? 
where 

1 1 
f~)• = fo(n)  + ~ - 

Differentiating with respect to n(r), we find 

in n 

# -  u(r) = ~ ln n(r) + f a ( r -  r') f~X(n~(r') ) d3r ' 

- f n~(r') z(r - r') og~(n~(r'))/n~(r ') d3r ' 
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(6.14) 

(6.15) 

(6.16) 

ezo(r) = -2B2o(n)  a * r ( r )  - fiB~o(fi ) ~ * z(r) (6.18) 

where B2(n)= [tiP(n)--n]/n 2, or in Four ier  t ransform 

g2o(k) = -2B2o(fi)  #(k)  ~(k) - fiB2o(fi) ~ '(k) 2 (6.19) 

at the reference density h. Fo r  the remaining  relat ion between ~r and  v, 
several opt ions are available. One  is to d e m a n d  that  (6.19) hold at two 
reference densities. Another  is to again  produce  cr by an infinitesimal 
dilation 

a( r )  = - ~ r .  V~(r) (6.20) 

when bounded  by a stratified potent ial  on the left but  free on the right. 
One  obvious  cri terion for choosing T and  a is to d e m a n d  that  they 

yield the correct  direct corre la t ion at  some uniform reference density ft. 
F r o m  (6.1), this is seen to require 

(6.17) f n(z) u'(z) dz + Po = 0 

Equat ion  (6.16), irrespective of the choice of  ~ and or, is readily shown to 
satisfy the impor t an t  ac t ion- reac t ion  sum rule 
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to be used in conjunction with (6.19), or even with an empirical volume 
average. Perhaps simplest is the choice a ( r )=z ( r )  (with hard rods no 
longer a special case), so that (6.16) and (6.19) reduce to 

where 

l ~-u(r)=~lnn(r)+~(~(r)) 

f(r) = f z(r') f(r + r') d3r ' 

e ( k )  2 = a2o(k)/a2o(O) 

Few of these possibilities have been investigated in detail. 

(6.21) 

(6.21 

7. M E A N  FIELD C O R R E C T I O N S  

Let us now shift our attention to long-wavelength behavior. For this 
purpose, we can deal with the core fluid on a local thermodynamic basis, 
and focus on correlation corrections to the mean field picture. The van der 
Waals decomposition (4.1) is still the format of choice, but we want to 
associate thermalized particles with the short-range forces, and waves with 
that portion of longer range. An appropriate starting form is 

xexpI~flflp(r)~l(r-r')p(r')d3rd3r'l) (7.1) 

where p(r)=~6(r-r/) is the microscopic density, ~ [ p ]  is the 
corresponding (bilinear) core energy, # includes the ~b 1 self-interaction, and 
Tr integrates over all particles involved. The desired dual representation 
(Kac--Seigert ~8'9)) makes use of the Gaussian functional integral 

exp I~ fl ff p(r) Ol(r-r') p(r') d3r d3r' 1 

1 

dq v (7.2) 
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where Dv is an appropriate measure, and ~ b l l ( r - r  ') is the inverse of ~bl 
regarded as the kernel of an integral operator. It follows at once that 

1 d3 r d3r, 1 Z [ , - u ] =  f e x p  [ -  ~ ~ f f  v(r) O ~ - l ( r -  r') v(r ') 

x Zo[/~ - u - v] Dv (7.3) 

which we write (see, e.g., Ref. 32) in the compact form of a v-space par- 
tition function 

e -~E~-u3  = f e ~H~[v3 Dv 

g . [ v ] = f 2 o [ # - - u - v ] +  5 v ( r ) ~ f l ( r - r ' ) v ( r ' ) d 3 r d 3 r  ' (7.4) 

and associated v-space probability distribution 

p , [ v ] = e ~ ( ~ [ ~ - , ]  H,~?) (7.5) 

Our major interest is in the profile 

n(r ) = 6g2[# - u ]/ bu(r ) (7.6) 

In the local thermodynamics approximation, 

~ 0 [ u  - u - v ]  = f COo(# -  u(r)  - v(r))  no(# u(y) v(y)) d3r (7.7) 

where co o and no are functions, not functionals of their respective 
arguments, so that (7.6) attains the simple form 

n(r) = (no(#  - u(r) - v(r) ) } p,[v 3 (7.8) 

i.e., the internal field q~l has been simulated by an ensemble of external 
fields {v}. To evaluate (7.8), we can proceed by steepest descent. In zeroth 
order, we simply use that function ~5(r) that maximizes p , [v ] :  

~H.[~] 
O -  c S e ( r ~ = n o ( # - u ( r ) - O ( r ) ) +  f 6 [ l ( r - r ' ) O ( r ' ) d 3 r '  (7.9) 

Hence 

g(r) = - f  ~bl(r - r') no( # - u(r') - 6(r')) d3r , 

= - f  01(r - r') n(r') d3r ' (7.10) 

is precisely the mean field that gives rise to (4.6). 
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We now continue by expanding in d(r)= v ( r ) -  ~(r). Since 

62H,[g] 

&5(r) 6g(r') 
n'o(# -- u(r) - O(r) ) 5(r - r') + ~b ~ '(r - r') 

6 ( r -  r') 
- -  + O ~ l ( r - r  ') (7.11) 
#;(~(r)) 

where ~(r) is the mean field profile, (7.8) then becomes, through second 
order, 

where 

( ,  

n(r) = J no(l* -- u ( r ) -  O(r)- A(r)) 

( exp[--�89 ~ M(r, r') A(r) fl(r') d3r d3r '] 
X 

J exp[ --�89 ~ M(r, r') A(r) A(r') d3r d3r '] DA 

M(r, r') = -(~(r - r')/la'o(ff(r) ) + ~s - r') (7.12) 

Only A(r) at fixed r occurs in the integrand, allowing us to reduce (7.12) at 
once to 

I 1-~A2/M-I(r, ] n ( r ) = j n o ( # - u ( r ) - O ( r ) -  A)ex r) dA 

x [2~zM-l(r, r)] -1/2 (7.13) 

which is just an r-dependent Gaussian spread of/~, due to the excitations 
represented by the normal modes of M. For a clearer interpretation, if A is 
not large on the scale of zS, we can write O(r) + A = ~(r + flA/[VO'(r)[ ), where 
0 is the unit vector in the direction V~5(r). Hence, (7.13) becomes 

n(r)= f n o ( # - u ( r ) - g ( r  +~A(r) f ) ) e  1/2~2 d~/(2~)1/2 (7.14) 

where 

A2(r) = M  l(r, r)/lVg(r)[. We recognize the profile broadening as due to 
the mean field being carried bodily by the correlated motion 
r--+ r + ~A(r)fl with Gaussian distribution of 4, an obvious manifestation 
of capillary waves. 

It is to be observed that (7.14)~determined by fi(r)--will transcribe 
any fluctuationless profile to its fluctuation-broadened image, but will not, 
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e.g., change the nature of the underlying wetting transition. One can readily 
imagine self-consistent generalizations in which this is not the case. For 
further discussion, see Ref. 33. 
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